Bovine milk proteins as the source of bioactive peptides influencing the consumers’ immune system – a review

Magdalena Szwajkowska1,*, Anna Wolanciuk1, Joanna Barłowska1, Jolanta Król1, Zygmunt Litwińczuk2

1 Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
2 Department of Breeding and Protection of Genetic Resources of Cattle, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland

(Received January 21, 2011; accepted September 1, 2011)

The present review describes selected peptides derived from bovine milk proteins and demonstrates their effect on the human immune system. Apart from their obvious nutritive value milk proteins and products of their degradation (peptides) have multiple biological functions. Bovine milk, fermented milk drinks and cheeses are the most abundant sources of biologically active peptides. One of the primary functions of milk is to protect the health of a newborn organism by the virtue of the fact that milk contains many proteins, which exhibit bacteriostatic and bactericidal properties in their intact form. Ingestion of bovine milk by humans causes that bioactive peptides are evoked from delivered proteins during the course of digestion. They possess not only immunomodulatory, but also antibacterial, antiviral and antifungal properties.

KEY WORDS: antimicrobial activity / cattle / immunomodulation / milk / peptides / protein

Proteins are essential and integral components of food as a source of energy and exogenous amino acids necessary for growth of a living organism. Bovine milk is an excellent source of proteins of high biological value. It is characterized by well-balanced amino acid profile and exceptionally high digestibility. Apart from their obvious nutritive value, milk proteins and products of their degradation (peptides)

Biologically active peptides derived from milk proteins are defined as specific protein fragments (3-20 amino acid residues), which have a positive impact on the physiological functions of the body ultimately affecting the health of living organism [Kitts and Weiler 2003, Möller et al. 2008]. Functional properties of such peptides are revealed only after degradation of the native protein structure. This degradation may be a consequence of enzymatic hydrolysis, fermentation of milk conducted by the starter cultures of proteolytic bacteria and other processes used in dairy production [Michalidou 2008]. Native sequences of milk proteins may contain fragments that exert various activities, such as antihypertensive, antithrombotic, opioid, opioid antagonist, immunomodulatory, antibacterial, antifungal, antiviral, antioxidant, binding and transporting metals, preventing amnesia and causing smooth muscle contractions [Seppo et al. 2003, Haug et al. 2007a, Ebringer et al. 2008, Atanasova and Ivanova 2010]. In addition, such peptides show a much lower allergenicity than the protein from which they were formed. It is related to their lower molecular weight [Host and Halken 2004].

The aim of the present paper was to present selected peptides derived from bovine milk proteins and their influence on the human immune system.

Obtaining bioactive peptides from bovine milk proteins

General scheme of obtaining bioactive peptides from bovine milk proteins is shown on Figure 1. Enzymatic hydrolysis is one of the most common processes, which result in formation of bioactive peptides [Korhonen and Pihlanto 2006]. The release of bioactive peptides from milk proteins in the gastrointestinal tract results from the action of digestive enzymes such as pepsin and pancreatic enzymes (trypsin, chymotrypsin, carboxy- and aminopeptidases). The efficiency of physiological activity of biopeptides depends on their ability to maintain integral state during transport to the various functional systems of the body [Vermeirssen et al. 2004, Picariello et al. 2010]. Many well-known bioactive peptides have been generated in vitro by the action of digestive enzymes, mostly pepsin and chymotrypsin. Other digestive enzymes and combinations of proteinases (alcalase, chymotrypsin, pancreatin, pepsin, thermolysin) as well as enzymes derived from bacteria and fungi are also used for the production of bioactive peptides from various sources.

The process of fermentation carried out by microorganisms has been known and used in dairy production for many thousands of years in order to extend the consuming period of milk [Hayes et al. 2007]. Achievements of food science and technology of food production have allowed exploring the broad spectrum of opportunities created by the lactic fermentation, i.e. formation of bioactive peptides. Numerous bacterial strains used in dairy production exert proteolytic activity, which eventually leads to the release of bioactive fragments from the native protein structures. Peptides with
different chain lengths are released during the action of bacterial proteases and peptidases (secondary proteolysis) – Sieber et al. [2010]. Type of bacterial culture used is the most important factor determining the nature of the synthesized bioactive peptides. For example, bacterial strain *Lactobacillus helveticus* was the subject of many promising experiments in anti-cancer research. Some authors suggest that milk fermented by these bacteria exerts numerous actions causing the growth reduction of tumor cells. Moreover, peptides produced by *Lactobacillus helveticus* fermentation support the production of antibodies also against the O157:H7 *Escherichia coli* strain [LeBlanc et al. 2002, 2004, Rachid et al. 2006]. Another example is fermentation with the use of *Lactobacillus lactis*, which leads to the release of oligopeptides containing the amino acid sequences characteristic of various biologically active peptides such as casomorphines, lactorphines, casokinines and immunopeptides [Ebringer et al. 2008].

Peptides with diverse biological activities have been identified in many dairy products, not only in milk protein hydrolysates and fermented milk, but also in cheeses [Gobetti et al. 2000, Walther et al. 2008] that are among the most important dairy products in the world. Variety of enzymatic processes occurs during cheese ripening.

Bioactive milk-derived peptides

![Diagram](image)

Fig. 1. Scheme of obtaining bioactive peptides from bovine milk proteins. Source: own elaboration based on Short and O’Brien, 2004.
They involve action of chymosin and participation of specialized bacterial strains which contribute not only to the formation of the characteristic sensoric properties of cheese. They also induce the release of numerous antibacterial peptides derived mainly from caseins [Rizello et al. 2005, Losito et al. 2006, Pritchard et al. 2010]. For example, the Emmentaler cheese is abundant in antibacterial and immunomodulatory peptides derived from α- and β-casein [Gagnaire et al. 2001] – Figure 1.

The influence of peptides released from bovine milk proteins on the immune system

One of the primary functions of milk is to protect the health of a newborn mammal. Milk contains many peptides and proteins, which exhibit bacteriostatic and bactericidal properties in their intact form [Bagnicka et al. 2010]. These properties of proteins [Litwińczuk et al. 2011] are primarily associated with whey proteins such as immunoglobulins, lactoferrin, lactoperoxidase and lysozyme [Atanasova and Ivanova 2010]. Ingestion of bovine milk by humans causes that bioactive peptides are evoked from consumed proteins throughout the course of digestion. They possess not only immunomodulatory, but also antibacterial, antiviral and antifungal properties. The disintegration of bacterial cells by the antibacterial peptides involves the destruction of the cell membrane or mitochondrial membrane. The mechanism of action is related to the binding affinity depending on the electrostatic interaction of peptide with the surface of the cell membrane [Brodgen 2005]. Bechinger [1997] and Hancock and Lehrer [1998] claim that antibacterial peptides derived from various sources are able even to destroy antibiotic-resistant bacteria developing in hospitals. It is related to the fact that the rate of destroying these microorganisms is greater than the rate of their reproduction. The immunomodulatory action of biopeptides is related to the stimulation of proliferation of human lymphocytes and macrophages phagocytic activity [Clare et al. 2003]. Furthermore, many cytochemical studies indicate that peptides can induce apoptosis of cancer cells [López-Expósito and Recio 2008].

Numerous studies focus on multipotential activity of lactoferricin (Lfcin) that is a product of hydrolytic degradation of lactoferrin (LF). Lactoferrin itself exhibits a strong bactericidal activity through its ability to bind iron. Lactoferricin consists of 25 amino acid residues from the N-terminal region of lactoferrin and is released by pepsin digestion of LF under acidic pH [Haug et al. 2007b, Oo et al. 2010]. This peptide shows a considerably higher antimicrobial activity than the native protein. Antibacterial spectrum of Lfcin is broad, while its minimum concentration necessary to inhibit growth of microbes is low (0.5 mg/ml). Moreover, Lfcin is heat-resistant and exerts its activity over a wide range of pH. It is well established that the capacity of the peptide to bind to the surface of Gram-negative bacteria results in the release of lipopolysaccharide (LPS) from the bacterial cell wall, which causes damage to cell walls and other morphological changes [Bellamy et al. 1992, Appelmelk et al. 1994; Nibbering et al. 2001, Tomita et al. 2001, Małaczewska and Rotkiewicz 2007].
Furthermore, Lfcin has been found effective in the treatment of some cancer varieties, such as leukemia and neuroblastoma [Gifford et al. 2005].

Lactoferrampin (Lfampin) is another peptide derived from lactoferrin. It has a wide spectrum of antifungal and antibacterial properties. The peptide exerted antifungal (against Candida) activity higher than LF and was also active against Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa [van der Kraan et al. 2004, 2005]. Lactoferrin and its derivatives show the antibacterial activity in vitro against various pathogens, e.g. Clostridium perfringens, Candida albicans, Haemophilus influenzae, Helicobacter pylori, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Salmonella enteriditis, Staphylococcus aureus, Streptococcus mutans, Vibrio cholerae as well as antiviral activity against hepatitis C, G, and B virus; HIV-1; cytomegalovirus; poliovirus; rotavirus; and herpes simplex virus [Farnaud and Evans 2003, Pan et al. 2007]. It has been suggested that lactoferrin and its derivatives affect the production of cytokines involved in immune reactions of the organism [Möller et al. 2008].

LF-derived peptides are proposed for clinical applications due to their chemopreventive and immunomodulatory properties. Moreover, it is also alluded to use them as food preservatives [Haque and Chand 2008, Król et al. 2011].

The whey protein fraction of bovine milk consists mainly of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). Biologically active antibacterial peptides are released during the digestion of β-lactoglobulin with trypsin. Such peptides demonstrate activity against food pathogens (Staphylococcus aureus, Listeria monocytogenes, Salmonella spp. and Escherichia coli O157) – Pellegrini et al. [2003]. Earlier Pellegrini et al. [2001] explained that action of peptides depends on their electrostatic charge. For example, some peptides derived from β-LG (f15 – 20, f25 – 40, f78 – 83 and f92 – 100) have the negative electrostatic charge, and their activity is restricted mainly to the Gram-positive bacteria. Native α-lactalbumin has immunomodulatory properties, but does not affect microorganisms, whereas products of its degradation by trypsin and chemotrypsin (f1 – 5, f17 – 31-SS-f109 – 114 and f61 – 68-SS-f75 – 80) or pepsin exhibit both immunomodulatory and antimicrobial properties against bacteria, viruses and fungi [Fiat et al. 1993, Pellegrini et al. 1999, Kamau et al. 2010]. Biological properties of peptides encoded in the structure of β-LG have been a subject of studies aiming at inhibition of the human immunodeficiency virus type 1 by use of chemically modified β-LG (3-hydroxyphthaloyl-β–LG) – Neurath et al. [1997a,b], Oevermann et al. [2003], Taha et al. [2010]. Acidic peptides derived from β-LG under the action of peptidases of Lactobacillus paracasei decreased the stimulation of lymphocytes and regulated production of IL-10, IFN-γ and IL-4. This indicates an existing prospect of eliminating the cow milk allergy reaction [Prioult et al. 2004].

Numerous studies are dedicated to the casein fraction, which accounts for 80% of milk total protein and is a rich source of bioactive peptides that stimulate and aid the immune system. Hydrolysis of αs2-casein (by chymosin acting at neutral pH) results in releasing casocidin. This peptide shows antibacterial properties against
Staphylococcus spp, Sarcina spp, Bacillus subtilis, Diplococcus pneumoniae, and Streptococcus pyogenes [Lahov and Regelson 1996, Clare and Swaisgood 2000, Silva and Malcata 2005]. It was also reported that antibacterial peptides obtained from αs1-casein (i.e. f183-207 and f164-179) inhibit growth of both Gram-positive and Gram-negative bacteria when used in small (i.e. from 8 to 95 µmol/l) concentration [Recio and Visser 1999].

Another casein-derived peptide – isracidin – is encoded in the native sequence of αs1-casein (N-terminal fragment f1-23) and is also released by of chymosin. It shoved in vivo antibiotic properties against Staphylococcus aureus and Candida albicans. Intramammary injection of isracidin protects cows and sheep from mastitis [Hayes et al. 2005, Sayer et al. 1996]. Haque and Chand [2008] reported that isracidin achieves 80% efficiency against chronic udder infection with Staphylococcus in cows. Moreover, the peptide exerts therapeutical and prophylactic properties, which provide a long-term increase of immune resistance [Lahov and Regelson 1996].

Caseicins A, B and C are released from αs1-casein during fermentation of milk by Lactobacillus acidophilus. Their properties are similar to those previously mentioned of the other antimicrobial peptides. Characteristic of caseicins A (αs1-CN f21-29) and B (αs1-CN f30-37) is their particularly high activity against Escherichia coli O157:H7 and Enterobacter sakazakii [Hayes et al. 2005]. Presence of the latter bacterium was reported numerous in powdered infant formulas [FAO/WHO 2008, Oonaka et al. 2010]. The Enterobacter sakazakii may lead to severe neurological complications in infants, such as hydrocephalus and delayed development of the nervous system with a related mortality rate from 40 to 80% [Korpysa-Dzirba et al. 2007]. Furthermore, caseicins have been found active against various Gram-negative pathogens (Cronobacter sakazakii, Cronobacter muytjensii, Salmonella enterica subspecies 1 serovar Typhimurium, Escherichia coli, Klebsiella pneumoniae and Pseudomonas fluorescens) as well as the Gram-positive Staphylococcus aureus [Norberg et al. 2011]. It is also noteworthy that the peptides derived from α-casein promote the growth of probiotic Lactobacillus acidophilus while inhibit that of pathogenic bacteria [Srinivas and Prakash 2010] indicating their positive effect on the gastrointestinal tract and suitability in nutraceuticals production.

During the chymosin-induced hydrolysis of κ-casein, the peptide bound fractures between Phenylalanine (Phe105) and Methionine (Met106). Two polypeptides are released – a hydrophobic N-terminal para-κ-casein polypeptide (1-105 amino acid residues) and a hydrophilic C-terminal phosphorylated and glycosylated fragment known as caseinomacropeptide (CMP) – Malkoski et al. [2001] – or glycomacropeptide (GMP) – Brody [2000]. At least six genetic CMP variants were identified in bovine milk, A and B being most common. Fractionation of heterogeneous CMP (i.e. by hydrolytic action of endoproteinase Glu-C) results in the formation of kappacine – the non-glycosylated form of CMP. The peptide has membranolytic properties, which determine its bactericidal properties [Malkoski et al. 2001, Dashper et al. 2005]. CMP and its derivatives possess immunomodulatory properties, they also inhibit
hemagglutination caused by the influenza virus, binding the toxins of *Vibrio cholerae* bacterium. In addition, these peptides inhibit the adherence of *Streptococcus mutans*, the Gram-positive bacterium responsible for caries development and growth of Gram-negative bacteria, such as *Porphyromonas gingivalis* and *Escherichia coli* [Brody 2000, Malkoski *et al.* 2001, Haque and Chand 2008]. The action of selected biopeptides on the immune system is presented on Figure 2.

Conclusion

Despite the current opinions that every protein can serve as the precursor of biologically active peptides; the most abundant source of bioactive peptides is bovine milk, as well as fermented and other milk products. Industrial and semi-industrial techniques of isolation and fractionation of milk proteins are already commonly used by dairy industry. The described examples of formation and functioning of bioactive peptides encourage pursuing further studies, aiming at utilization of these substances for production of food. Health beneficial nutraceuticals with incorporated bioactive peptides support the immune system in a non-invasive manner. Biologically active peptides may also be used as potential pharmaceuticals, characterized by well-defined effects. Studies concerning the possible physiological impact of bioactive peptides are continuously developing. This area of research requires further experiments and investigations in order to acquire knowledge of their mechanism of action.
Furthermore, it is crucial to extend the durability and stability of peptides during the digestion, which causes their inactivation. It can be anticipated that many new products, which are targeted at specific age groups of consumers or at individuals with the compromised immune system, will soon emerge on the market. Particular attention should be given to the studies on the well-known and popular products, which also contain biologically active peptides, formed during the technological processes used in dairy production.

REFERENCES

Bioactive milk-derived peptides

25. HOST A., HALKEN S., 2004 – Hypoallergenic formulas – when, to whom and how long: after more than 15 years we know the right indication! *Allergy* 59, 45-52.
32. LAHOV E., REGELSON W., 1996 – Antibacterial and immunostimulating casein-derived substances from milk: caseicidin, isracidin peptides. *Food and Chemical Toxicology* 34, 131-145.

Bioactive milk-derived peptides

63. SHORTT C., O’BRIEN J., 2004 – Handbook of Functional Dairy Products. Published by CRC PRESS LLC 2004, USA.

